

Auto-remediation is important

Opeyemi Onikute

18th January, 2025

London, United Kingdom

Building software at scale is hard. Maintenance is even harder.

No company can succeed without a solid approach to handling operational
problems. Failures will happen. As fleet sizes cross 10,000 servers, services need to
be increasingly operations-friendly [1]. Each service should run with as little human
intervention as possible. Unfortunately, Operations teams such as DevOps and SRE
still find themselves intervening regularly.

There are several considerations when building an ops-friendly product. Some
examples are designing for scale, providing redundancy, and building automatic
failure recovery. As an experienced SRE, I have a vested interest in the last item,
failure recovery without human intervention. How do we get there?

In 2018, a payment outage left millions of Visa customers in Europe unable to make
payments with their cards. This caused widespread panic, and rightly so. People
want assurance that their money is safe and accessible. The postmortem revealed
that a faulty data center switch caused several transaction failures. Considering it
took ~10 hours for the issue to be resolved, I think it’s safe to say that a lot of people
worked together for a while to get the fix out. Without intervention, it would’ve been
even longer.

Before fixing problems through intervention, engineering teams need to first know
when they happen. This is why Monitoring and Alerting are fundamental to
preventing high-impact incidents. An alert queries a metrics system for a known
problematic condition and notifies a responsible stakeholder when there’s a match.
The alert priority then determines the level of intervention required.

This approach scales across teams, organizations, and companies. Although the
nature of the alert may differ due to differences in what is monitored, the approach

https://www.computerweekly.com/news/252443325/Visa-reveals-rare-datacentre-switch-fault-as-root-cause-of-June-2018-outage

itself is reusable. An engineer who is responsible for a product's customer
experience may receive an alert when there is a spike in user errors, while an
infrastructure engineer who is responsible for a database receives an alert when the
database's CPU utilization is beyond a threshold.

At a small company, it will often suffice for a human to respond to every alert, as it is
not expected to be high volume. As the company grows in size, however, the number
of alerts may increase exponentially. Responding to every alert is no longer easy to
do, and the toilsome nature of some alerts is exposed. This is when engineers
typically explore ways to automate alerts. Toil reduction is a reasonably strong
motivating factor. Toil is any response/action that is repetitive and brings no
enduring value.

A common initial approach amongst ops engineers is shell scripting. Responders can
run the shell scripts to reduce the time taken to resolve the alert and eliminate room
for human error. Meanwhile, a product engineer may rewrite the behavior of the
software to fix any latent bugs or improve performance. They may differ in their
eventual solution, but both examples involve writing some code to resolve alert
conditions.

While shell scripts and code fixes make response easier, they still require human
effort. This effort does not scale with company offerings. Soon enough the response
becomes hectic again. Some alert response procedures require communication with
external systems and teams. When I worked in fintech, a provider could go down
randomly. The product team’s responsibility was to ensure that the failure was
handled gracefully e.g. by switching to a backup provider. But that wasn’t the end.
They’d then need to reach out to get the issue resolved. Sometimes the first phase is
automated, but the second is manual. I have found recently that human
communication in failure response is a great candidate for automation. A system can
start an email thread with a partner, or page the on-call of a dependent service team.

As alert volumes increase, invest in software to handle routine failures. It is worth
noting that early-stage companies typically run in cloud environments and bear less
of a burden of infrastructure recovery, especially from hardware failures. The cloud
provider automatically handles infrastructure failures. Some cloud features also
provide self-healing capabilities. AWS autoscaling will increase capacity in high-load
conditions, preventing resource utilization problems. GCP has autohealing that can
automatically restart an instance based on health checks. In some cases, however,
this may not be enough. A service may face unique failure conditions based on the
architecture and nature of the product offering.

It is also common to use an orchestration system such as Kubernetes. Hardware
failure recovery is baked in here —- if a node becomes unhealthy the tasks are
rescheduled onto another. Services can then further implement “self-healing” by

https://aws.amazon.com/ec2/autoscaling/
https://cloud.google.com/compute/docs/tutorials/high-availability-autohealing

designing for reliability. A simple example is a service health check which can cause
a task to be rescheduled on failure. It’s good that platforms nudge users to these best
practices by default, who can implement basic self-healing without reading a
1000-word blog post.

It is common to find on-premise infrastructure in larger companies. When you own
both the software and hardware, it’s more likely that you need to think about
infrastructure auto-remediation. This is why these companies have had to solve
problems from the bottom up and have created well-known solutions. These
solutions often form the basis of cloud offerings and other well-known orchestration
systems. Kubernetes for example was based largely on Borg, a large-scale cluster
management system developed by Google [2]. Meta has described FBAR, an
auto-remediation system initially designed to automatically recover from hardware
failures but has since been extended to service owners for custom remediation [3].
Microsoft Autopilot automates provisioning deployment, and recovery from faulty
software and hardware [4]. More recently, Cloudflare described an auto-remediation
system built by SRE to kill toil, with additional reliability provided by durable
execution technology (the author should look familiar) [5].

Having built one from the ground up, I have seen firsthand how transformative an
auto-remediation system can be. Reducing toil and making on-calls less stressful is
one thing, but creating a shared strategy and vision is even more beneficial. I intend
to write more long-form material about how to design such a system and achieve
ops-friendly environments. For now, you can read the article on the Cloudflare blog.
If you have any questions or something you’ve found interesting, please reach out.
I’m particularly interested in companies where this is less of a problem that needs
solving - things just seem to work. Why?

The future of remediation is something I think about often as well. With the recent
AI boom, it is difficult not to get drawn into the potential. Meta has described how
they’ve used a machine learning model to predict what remediation might be
required when a hardware failure occurs [6]. I haven’t seen anything public from
Google, but I haven’t done much looking yet. I will write about my findings in
another blog post. But for now, my thoughts. Tooling that enhances diagnosis for
faster recovery would be a game changer. It’s easier to start with platforms like
Kubernetes since they have established concepts/patterns to train a model.
Ultimately, any tool that can understand the environment can enrich alerts with
recommendations, spot regressions, automatically silence problem patterns with no
impact, etc. Depending on the confidence rating of recommendations, it would then
be worth considering whether to feed those back to the auto-remediation system to
take action.

The concept of an operations-friendly system is not restricted to operations teams.
To me, operations here means “running in production”. As a product engineer, your
daily intervention count matters. It should be pretty easy to tell if your product isn’t
ops-friendly. The good news is that this is an opportunity for you to bring value to
your team and show leadership. With time and patience, you can untangle any
complex webs and break them down into fundamental engineering problems.
Chances are you don’t need to build auto-remediation first - you just need
better design. I recommend reading the paper “On Designing and Deploying
Internet-Scale Services” for more information [1].

Speak soon.

Footnotes

1.​ James Hamilton: On Designing and Deploying Internet-Scale Services
https://s3.amazonaws.com/systemsandpapers/papers/hamilton.pdf

2.​ Google: Large-scale cluster management at Google with Borg
https://dl.acm.org/doi/pdf/10.1145/2741948.2741964

3.​ Meta: FBAR (Facebook Auto-Remediation) was initially described in
https://engineering.fb.com/2011/09/15/data-center-engineering/making-f
acebook-self-healing/

4.​ Microsoft: Automatic Data Center Management
https://www.microsoft.com/en-us/research/publication/autopilot-automat
ic-data-center-management/

5.​ Cloudflare: Improving platform resilience at Cloudflare through automation
https://blog.cloudflare.com/improving-platform-resilience-at-cloudflare/

6.​ Meta: Predicting Remediations for Hardware Failures in Large-Scale
Datacenters
https://research.facebook.com/publications/predicting-remediations-for-h
ardware-failures-in-large-scale-datacenters/

https://s3.amazonaws.com/systemsandpapers/papers/hamilton.pdf
https://s3.amazonaws.com/systemsandpapers/papers/hamilton.pdf
https://dl.acm.org/doi/pdf/10.1145/2741948.2741964
https://dl.acm.org/doi/pdf/10.1145/2741948.2741964
https://engineering.fb.com/2011/09/15/data-center-engineering/making-facebook-self-healing/
https://engineering.fb.com/2011/09/15/data-center-engineering/making-facebook-self-healing/
https://engineering.fb.com/2011/09/15/data-center-engineering/making-facebook-self-healing/
https://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/
https://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/
https://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/
https://blog.cloudflare.com/improving-platform-resilience-at-cloudflare/
https://blog.cloudflare.com/improving-platform-resilience-at-cloudflare/
https://research.facebook.com/publications/predicting-remediations-for-hardware-failures-in-large-scale-datacenters/
https://research.facebook.com/publications/predicting-remediations-for-hardware-failures-in-large-scale-datacenters/
https://research.facebook.com/publications/predicting-remediations-for-hardware-failures-in-large-scale-datacenters/

	Auto-remediation is important
	Footnotes

